Biochemical reconstitution of abasic DNA lesion replication in Xenopus extracts

نویسندگان

  • Shuren Liao
  • Yoshihiro Matsumoto
  • Hong Yan
چکیده

Cellular DNA is under constant attack from numerous exogenous and endogenous agents. The resulting DNA lesions, if not repaired timely, could stall DNA replication, leading to genome instability. To better understand the mechanism of DNA lesion replication at the biochemical level, we have attempted to reconstitute this process in Xenopus egg extracts, the only eukaryotic in vitro system that relies solely on cellular proteins for DNA replication. By using a plasmid DNA that carries a site-specific apurinic/apyrimidinic (AP) lesion as template, we have found that DNA replication is stalled one nucleotide before the lesion. The stalling is temporary and the lesion is eventually replicated by both an error-prone mechanism and an error-free mechanism. This is the first biochemical system that recapitulates efficiently and faithfully all major aspects of DNA lesion replication. It has provided the first direct evidence for the existence of an error-free lesion replication mechanism and also demonstrated that the error-prone mechanism is a major contributor to lesion replication.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Replication-Dependent Unhooking of DNA Interstrand Cross-Links by the NEIL3 Glycosylase

During eukaryotic DNA interstrand cross-link (ICL) repair, cross-links are resolved ("unhooked") by nucleolytic incisions surrounding the lesion. In vertebrates, ICL repair is triggered when replication forks collide with the lesion, leading to FANCI-FANCD2-dependent unhooking and formation of a double-strand break (DSB) intermediate. Using Xenopus egg extracts, we describe here a replication-c...

متن کامل

Analysis of nuclear reconstitution, nuclear envelope assembly, and nuclear pore assembly using Xenopus in vitro assays.

The large and complex eukaryotic nucleus is the arbiter of DNA replication, RNA transcription, splicing, and ribosome assembly. With the advent of in vitro nuclear reconstitution extracts derived from Xenopus eggs in the 1980s, it became possible to assemble multiple nuclei in vitro around added DNA or chromatin substrates. Such reconstituted nuclei contain a nuclear lamina, double nuclear memb...

متن کامل

Extracts from eggs and oocytes of Xenopus laevis differ in their capacities for nuclear assembly and DNA replication.

We describe a cell-free extract derived from the oocytes of Xenopus laevis. The oocyte extract is capable of decondensing sperm chromatin and of replicating single-stranded DNA in a semiconservative, aphidicolin-sensitive manner. In addition, oocyte extract supports the elongation phase of DNA synthesis in nuclei that have been preinitiated for replication. All of these properties are shared by...

متن کامل

DNA synthesis across an abasic lesion by human DNA polymerase iota.

Abasic sites are among the most abundant DNA lesions formed in human cells, and they present a strong block to replication. DNA polymerase iota (Poliota) is one of the few DNA Pols that does not follow the A-rule opposite an abasic site. We present here three structures of human Poliota in complex with DNAs containing an abasic lesion and dGTP, dTTP, or dATP as the incoming nucleotide. The stru...

متن کامل

Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins

The use of cell-free extracts prepared from eggs of the South African clawed toad, Xenopus laevis, has led to many important discoveries in cell cycle research. These egg extracts recapitulate the key nuclear transitions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. DNA added to the extract is first assembled into a nucleus and is then efficiently ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2007